SIGGRAPH2013

Advances in New Interfaces for Musical Expression

Sidney Fels University of British Columbia Michael Lyons Ritsumeikan University

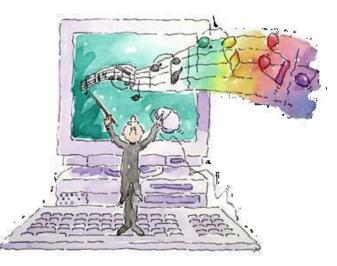
Laptop Performance

A NIME Performance

What is NIME about?

The Problem:

- Digital Technology & computers involved in nearly all forms of contemporary music
- But the computer is not a Musical Instrument


The "Office Gesture"

Laptop Battle Tokyo Superdeluxe Roppongi 11/2008 ☞ sml!

How to Play the Computer?

- Computers offer a wide range of sound and music creation opportunities
- How can we create new interfaces to play computers in a way that is appropriate to human brains & bodies?

How to Play the Computer?

This tutorial is all about progress in humancomputer interfaces for making music from past NIMEs

Objectives

- 1. introduce the theory and practice of NIME
- 2. NIME community is very accessible and growing
- 3. get to know some of the people of NIME
- 4. easy to start creating NIMEs and a lifetime of enjoyment to master
- 5. musical expression transcends gender and culture
- 6. if you are not having fun, it's probably not for you

A Brief History of NIME

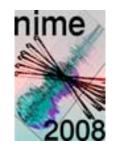
"New Interfaces for Musical Expression" First organized as a workshop of ACM CHI'2001 Experience Music Project - Seattle, April, 2001 Lectures/Discussions/Demos/Performances

©2013, S. Fels and M. Lyons

A Brief History of NIME

NIME-02 - Media Lab Europe, Dublin in May 2002 Conference-scale event with similar format to the NIME-01 workshop

... since 2001



NEW INTERFACES FOR MUSICAL EXPRES

2010

N I M E 2 0 1 1 O S L O

NIME Themes

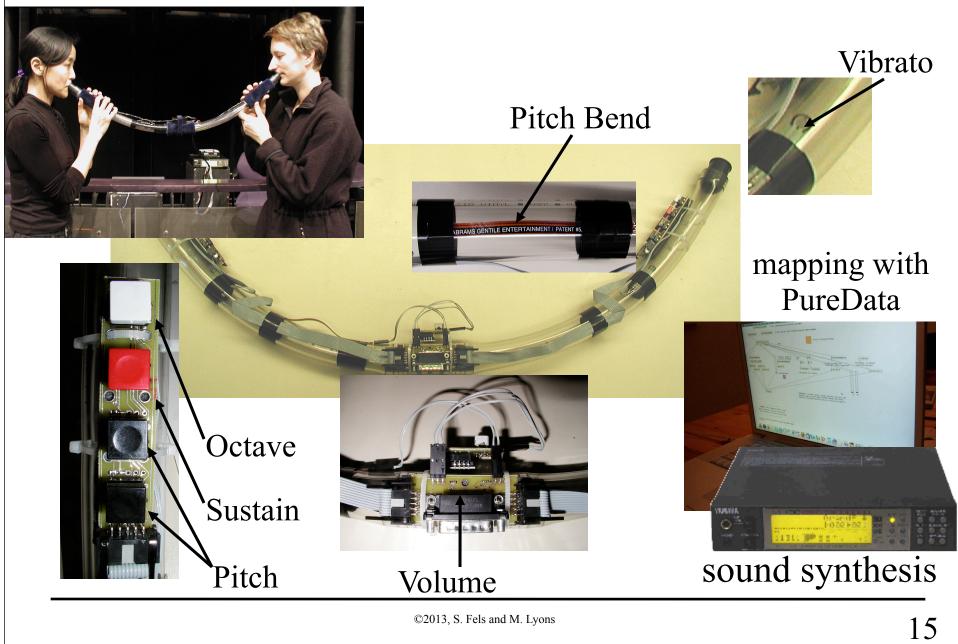
- Novel controllers & interfaces
- Performance & composition with new interfaces
- Interfaces for collaborative performance
- Real-time gestural control of music
- Interfaces for musical novices & education
- Cognition in Musical Interface Design
- Haptic & force feedback in musical control
- Artistic, cultural, and social impact

Course structure

- Part I 1h20m
 - Module 1: So you want to build a NIME...
 - Module 2: Camera-based Interfaces
 - Module 3: Design & Aesthetics of NIME
 - Discussion (if time)
- Break 15m
- Part II 1h20m
 - Module 4: NIME after NIME
 - Module 5: NIME Theory
 - Module 6: NIME Education
 - Discussion

Module 1: So, you want to build a NIME

Six step procedure Sensors Mapping Synthesis Demonstration


Six steps to build a NIME

- 1. Pick control space
- 2. Pick sound space
- 3. Pick mapping
- 4. Connect with software
- 5. Compose and practice
- 6. Repeat

1 and 2 often switched.

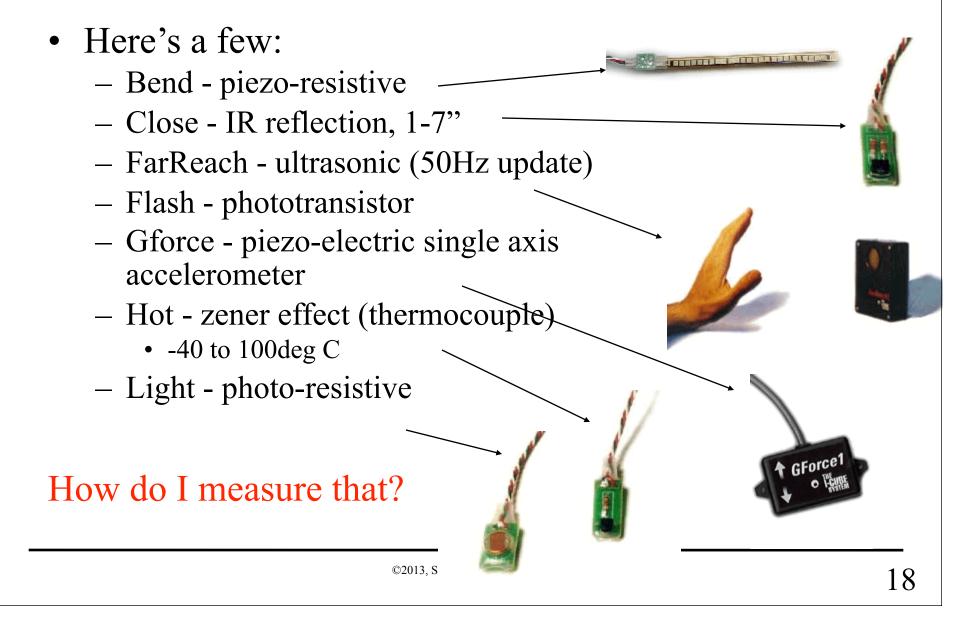
Tools to help with steps 1-4.

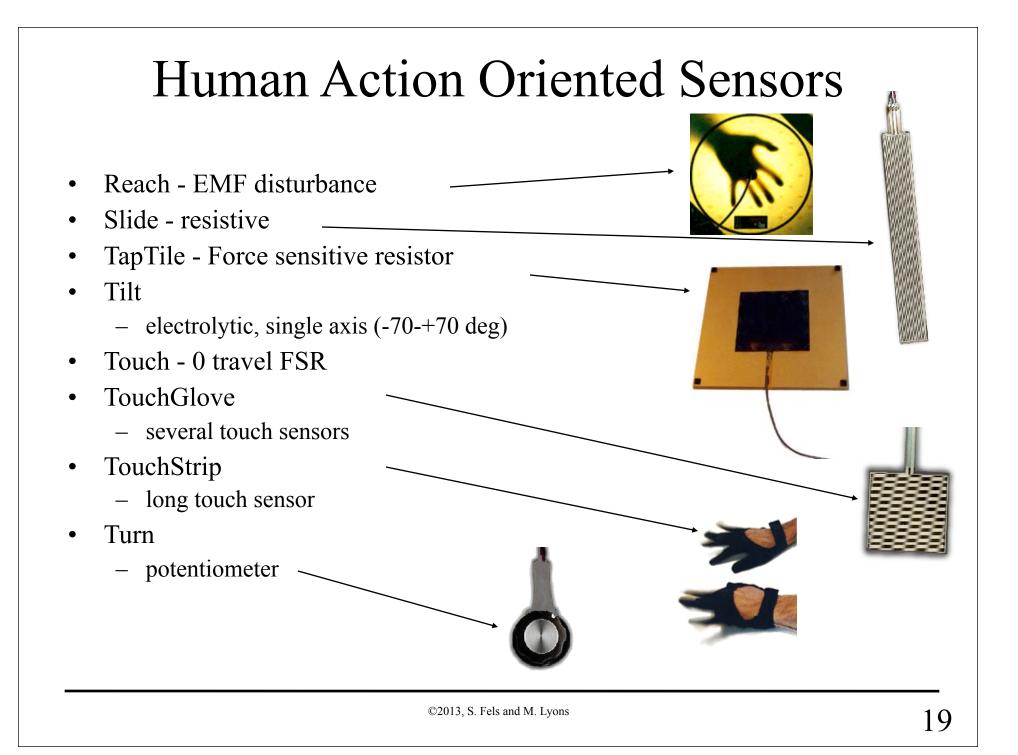
An example: Tooka (Fels et al., 2004)

Pick your control space

- Plethora of sensors available to measure:
 - motion of body parts
 - position, rotation, velocity and acceleration
 - translation and rotation (torque) forces
 - isometric and isotonic sensors
 - pressure
 - airflow

- proximity
- temperature
- neurophysiological signals
 - heart rate
 - galvanic skin response
 - brain waves
 - muscle activities
- light levels
- and more...


Physical property sensors


- Piezoelectric Sensors
- Force Sensing Resistors
- Accelerometer (Analog Devices ADXL50)
- Biopotential Sensors
- Microphones
- Photodetectors
- CCDs and CMOS cameras
- Electric Field Sensors
- RFID
- Magnetic trackers (Polhemus, Ascension)
- and more...

What can I measure?

Human Action Oriented Sensors

Connecting sensors

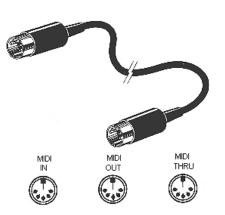
• Sensor response requires transduction and digitizing:

Digitizing • converting change in resistance into voltage - typical sensor has variable resistance (R_{sensor}) $V_{\rm src}$ (+5V) R_{sensor} Vout A simple voltage to digitizer divider circuit V = RIR $V_{out} = V_{src} * R$ $V_{gnd} (0V)$ $(R_{sensor} + R)$ ©2013, S. Fels and M. Lyons 21

Digitizers for Connecting to Computer

- Some MIDI synthesizers, i.e., Yamaha mu100
- Arduino board
 - Bluetooth module for wireless A/D
- ICubeX
 - A/D to MIDI
- Phidgets
 - A/D to USB
- DAQ boards
 - A/D to computer bus

Digitize


Mapping Sensor to Music

- The relationship between the change in the sensor value to the sound output is called a *mapping*
- The mapping defines how much effort to learn and play your NIME
- Last step is to control your sound output:
 - communication protocol
 - sound synthesizer

This is the heart of the course and what NIME community is specialized in.

Sound output control: communications

- Musical Instrument Digital Interface (MIDI)
 - electronic instrument standard defined in 1982
 - specifies;
 - connectors, data rates, electrical properties, etc.
 - 1 message/msec (approx)
 - note on/off, velocity is typical packet
 - control messages to change instrument synthesis
- Open Sound Control (OSC) (Wright and Freed, 1997)
 - TCP/IP, internet protocol, typically UDP based
 - faster, low latency, variable packet types
 - computer to computer, computer to hardware
- Internal protocols, i.e. DAQ driver

Sound Synthesis Techniques

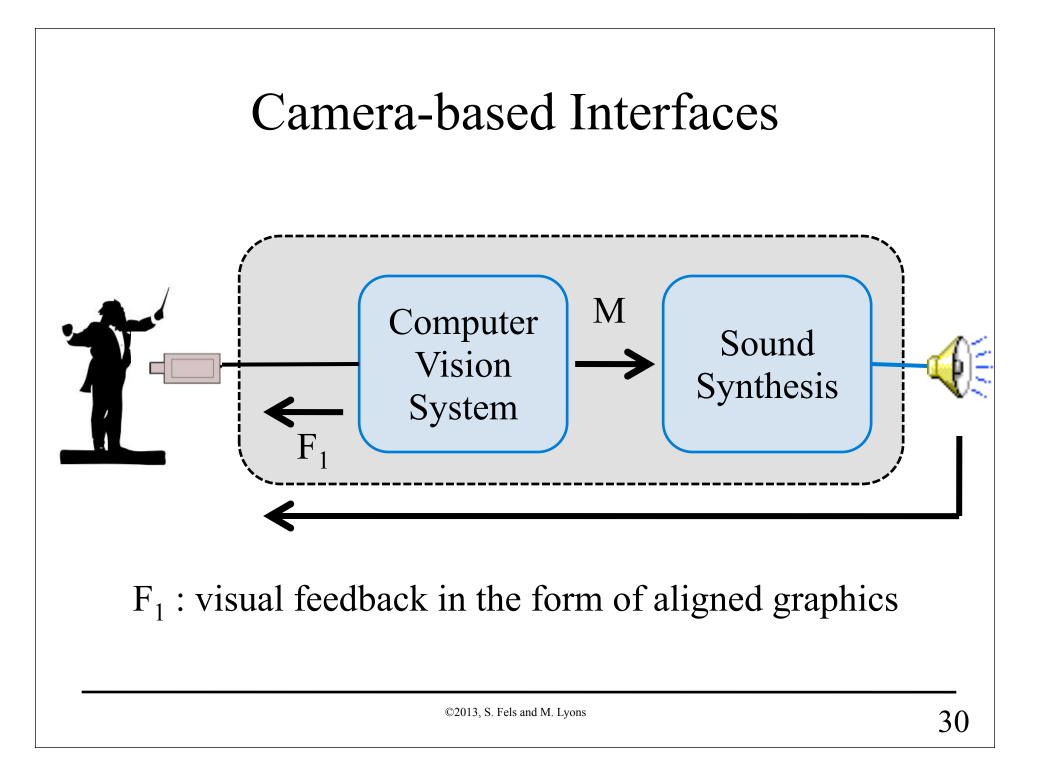
- Methods
 - sampled
 - FM synthesis
 - additive/subtractive
 - granular
 - waveguide/physical modeling
 - scan
- check out *Computer Music Tutorial*, Roads, C., MIT Press, 1996

Sound Synthesizers

- Hardware MIDI synthesizers
 - Yamaha, Roland, Korg, Casio, Moog, Kowai, Symbolic Sound Corporation, Nord modular, and others
- Software
 - STK (Cook)
 - PureData (Pd, Puckette)
 - JASS (van den Doel)
 - Max/MSP (cycling74.com)
 - Chuck (Wang and Cook, 2003)
 - Supercollider (McCartney, 1996)
 - and others

A few practical notes

- Portable:
 - Batteries can be used to make portable
 - Wireless protocols available for portable
- Write pieces for the instrument
- Aesthetics are important
- Plan your checklist for performance
 - too many things can go wrong with technology
- Plan your staging
 - can severely impact performance of sensors
- Plan for producing stable versions
 - hard to learn to play if NIME keeps changing


Module 3 has more details.

Summary

- Making a NIME is usually easier than playing it (well)
- Choose your:
 - movement type
 - sound space
 - sensing
- Put together your input, mapping and output
- Now you are ready to:
 - practice, practice, practice and perform...
 - aesthetic principles covered in module 3

Module 2: Camera-based Interfaces

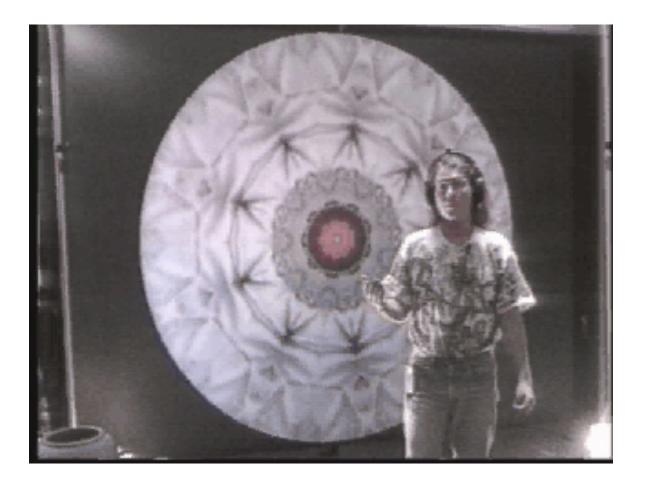
- Imaginary Piano: visual input only
- Iamascope: visual input and output
- Facial gesture musical interfaces: when vision may be your best option
- Reactable: vision + (passive) touch, through alignment)

Imaginary Piano: No visual feedback

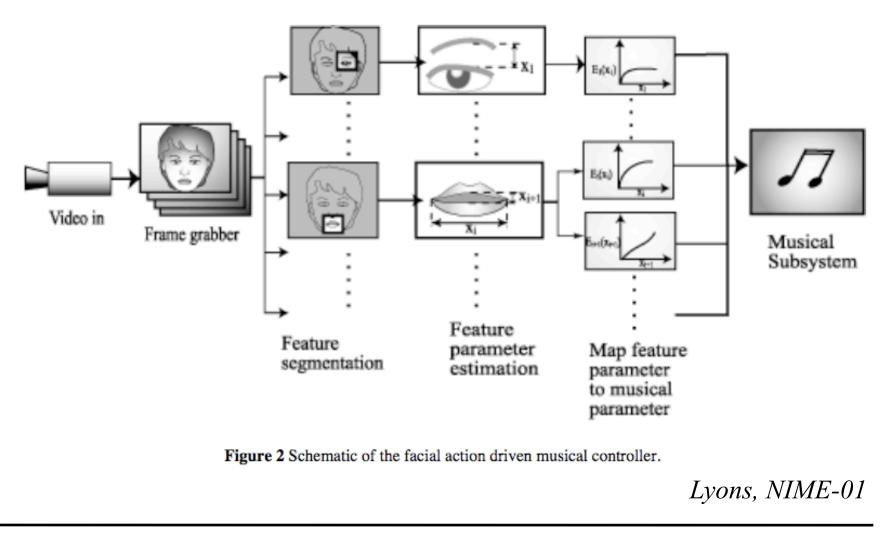
Leonello Tarabella, NIME-02

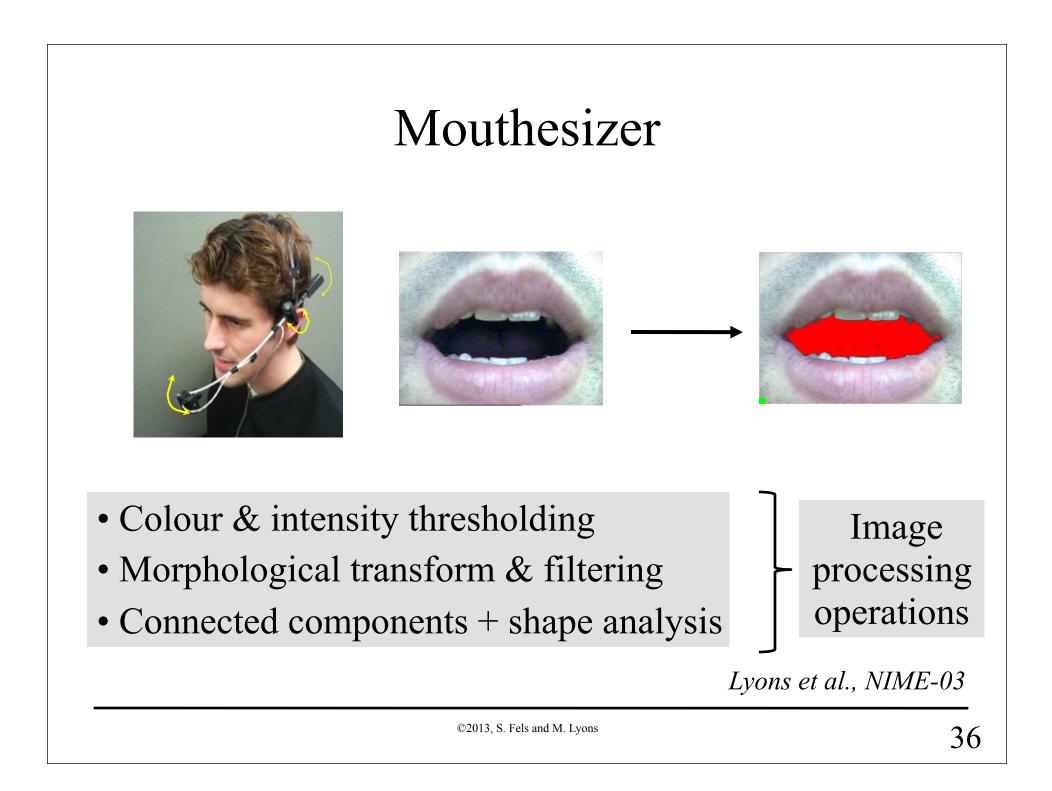
- Video camera with motion-sensitive zone
- No primary feedback

Visual Input Only: Imaginary Piano


Leonello Tarabella, NIME-02

Visual Input & Output


- Iamascope
- This gives a colourful kaleidoscopic feedback of part of the player. Gestures are used to trigger harmonious chord progressions and arpeggios.
- Quite good coordination between sound and graphics



Iamascope - video

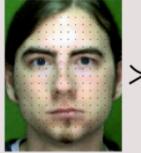
Facial Gesture Musical Interface

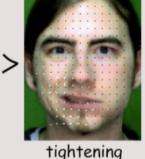
Mouthesizer Video Guitar Effects Controller

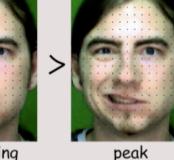
Lyons (2001)

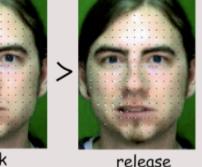
H Cutoff Frequency of Resonant Low Pass Filter W Distortion

Mapping:


Mouthesizer Video Guitar Effects Controller


Sonification of Facial Actions (SoFA)


- Optical Flow triggers samples
- Samples mapped to facial zones
- Frame is recalibrated with face detection "Saccades"


tighten one side of the face

start

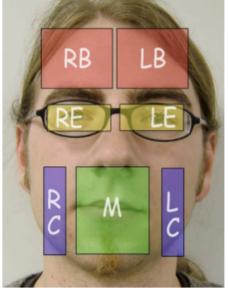


Figure 3. Facial Zones used to trigger MIDI events.

Figure 2 Sample facial action with associated optic flow vector fields illustrated as white line segments.

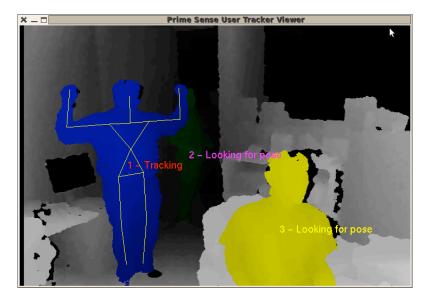
Funk et al., NIME-05

Sonification of Facial Actions (SoFA)

Reactable

- Video tracking of marked pucks on a table
- Projection of visual feedback
- Sergi Jordà et al., Universitat Pompeu Fabra
- first presented at NIME-03

Reactable


reactable

a musical instrument with a tangible user interface

3D Vision Interfaces

• OpenKinect

Summary

- Large number of works have used visual input and output as a way to enhance new musical interfaces
- General principle is that vision offers a powerful way to capture gestural input
- Visual output using camera input can provide transparency

Module 3: Design & Aesthetics of

- Technological Expressionism
- NIME & the Music Process
- Challenge of Performance
- Mapping & the Audience: Transparency
- Visual Feedback
- Interaction Metaphor
- Perry's principles

Technological Expressionism

• Shock of the New

- Techno-fetishism
- Human-machine relationship
- Experimentalism

Mari Kimura w/ Lemur Guitarbot

NIME Favors a Return to Process-oriented Music

• "...we are in a period of restoring fluidity to the musical transformative process – of making music more process-oriented again and less artifactoriented." *Gideon D'Arcangelo, NIME-04*

🛌 Oh Shenandoah played on iPhone ocarina

New Folk?

hrdrockgrrl's Channel

Subscribe

hrdrockgrrl Joined: 09 September 2006 Last Sign In: 1 week ago Videos Watched: 3,586 Subscribers: 171 Channel Views: 6,451

I'm an amateur musician. My main instruments are jazz piano and bluegrass mandolin, though I also play guitar and cornet.

City: Los Angeles Country: United States

Report profile image violation

Oh Shenandoah played on iPhone ocarina

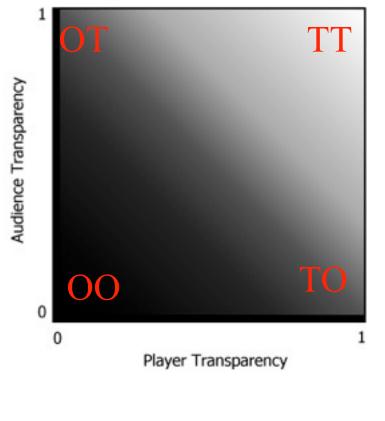
From: hrdrockgrrl Views: 25,959 Comments: 59

Challenge of Performance

- Audience may not understand your NIME
- Expectations may be varied
- No musical tradition to fall back on
- A demo is not a performance

Hisashi Okamoto, NIME-04 The First Sailing with Limber-Row

Hisashi Okamoto - Limber Row

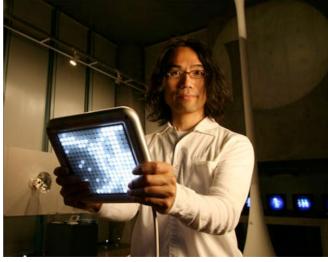


Transparency for Performer & Audience

- Complicated mapping \rightarrow OO
- Simplify \rightarrow OT
- Complex mapping \rightarrow TO

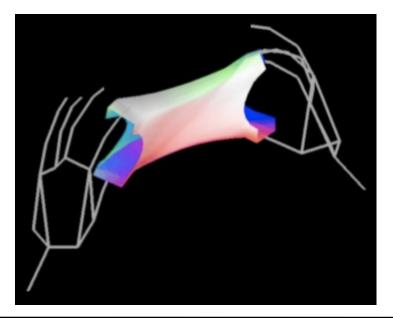
How to achieve \rightarrow TT?

T = transparentO = opaque


(Gadd et al, 2003)

Visual Cues & Transparency

- Visual Appearance of Instrument
- Visualization of Interaction
- Visualization of Sound Output



Tenori-on

Transparency & Interaction Metaphor

- SoundSculpting (Mulder and Fels, 1998)
 - two Cybergloves and Trackers
 - map metaphor of rubber sheet onto sound space
 - transparent for audience and performer

Transparency Simple & Direct Interface

Particle Kanta Horio, NIME-04

- Contact Mics
- Magnets
- Paper clips

Aesthetics of Failure

- Suspense highlights the technological challenge
- If there are never difficulties, glitches etc... then the limits are not being pushed

Some Design Guidelines: Perry's Principles

- Rules of thumb for the design of digital musical instruments
- Several of the principles are heavily subscribed
- "Principles for Designing Computer Music Controllers" P. Cook, NIME-01

Revised:

"Principles for Controlling Computer Music Designers" P. Cook, Keynote talk,

Human/Artistic Principles

- P1: Programmability is a curse
- P2: Smart instruments are often not smart
- P3: Copying an instrument is dumb, leveraging expert technique is smart
- P4: Some players have spare bandwidth, some do not
- P5: Make a piece, not an instrument or controller
- P6: Instant music, subtlety later

Human/Artistic Principles

- P1: Programmability is a curse
- P2: Smart instruments are often not smart
- P3: Copying an instrument is dumb, leveraging expert technique is smart
- P4: Some players have spare bandwidth, some do not
- P5: Make a piece, not an instrument or controller
- P6: Instant music, subtlety later

P1: Programmability is a curseP2: "Smart" Instruments are Often Not

- "Easy to add complexity, features, bandwidth"
- But instruments can quickly become complex, unstable, and difficult to learn
- It is tempting to A.I. to instruments but this can often be bad design if the player feels the instrument too obviously has a 'mind of its own'

Human/Artistic Principles

- P1: Programmability is a curse
- P2: Smart instruments are often not smart
- P3: Copying an instrument is dumb, leveraging expert technique is smart
- P4: Some players have spare bandwidth, some do not
- P5: Make a piece, not an instrument or controller
- P6: Instant music, subtlety later

Human/Artistic Principles

- P1: Programmability is a curse
- P2: Smart instruments are often not smart
- P3: Copying an instrument is dumb, leveraging expert technique is smart
- P4: Some players have spare bandwidth, some do not
- P5: Make a piece, not an instrument or controller
- P6: Instant music, subtlety later

P5: Make a piece not a controller P6:Instant Music, Subtlety later

- Making music is the goal
- The ideal new musical interfaces has:
 'Low entry fee with no ceiling on virtuosity' NIME-01

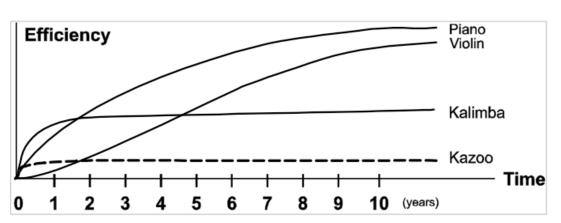


Figure 1. Approximate learning curve for the (a) kazoo, (b) kalimba, (c) piano and (d) violin, within a period of 10 years.

Wessel & Wright.

Jorda, NIME-04

Human/Artistic Principles

- P1: Programmability is a curse
- P2: Smart instruments are often not smart
- P3: Copying an instrument is dumb, leveraging expert technique is smart
- P4: Some players have spare bandwidth, some do not
- P5: Make a piece, not an instrument or controller
- P6: Instant music, subtlety later

Technological:

P7: Miracle, Industry Designed, InadequateP8: Batteries, Die (a command not an observation)P9: Wires are not that bad (compared to wireless)

Misc.:

P10: New algorithms suggest new controllersP11: New controllers suggest new algorithmsP12: Existing Instruments suggest new controllersP13: Everyday objects suggest amusing controllers

Technological:

P7: Miracle, Industry Designed, InadequateP8: Batteries, Die (a command not an observation)P9: Wires are not that bad (compared to wireless)

Misc.:

P10: New algorithms suggest new controllersP11: New controllers suggest new algorithmsP12: Existing Instruments suggest new controllersP13: Everyday objects suggest amusing controllers

P13: Everyday objects suggest controllers that are both amusing & good

- Sonic Banana (E. Singer, NIME-03)
- Java mug & Fillup Glass (P. Cook, NIME-01)

😵 🔹 Sonic Banana 2

Eric Singer - Sonic Banana

Technological:

P7: Miracle, Industry Designed, InadequateP8: Batteries, Die (a command not an observation)P9: Wires are not that bad (compared to wireless)

Misc.:

P10: New algorithms suggest new controllersP11: New controllers suggest new algorithmsP12: Existing Instruments suggest new controllersP13: Everyday objects suggest amusing controllers

New (as of 2007)

- P14: More can be better (but hard)
- P15: Music + Engineering is a great Teaching (and Marketing) tool
- P17: Younger students are more fearless

New (as of 2007)

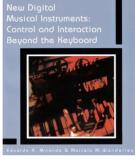
P14: More can be better (but hard)

- P15: Music + Engineering is a great Teaching (and Marketing) tool
- P17: Younger students are more fearless

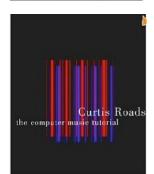
P15: Music + Engineering is a great Teaching Tool

- High student interest
- Motivation for learning a range of core topics including:
 - Sensors
 - HCI
 - DSP
 - Math skills
 - Programming
 - Networking

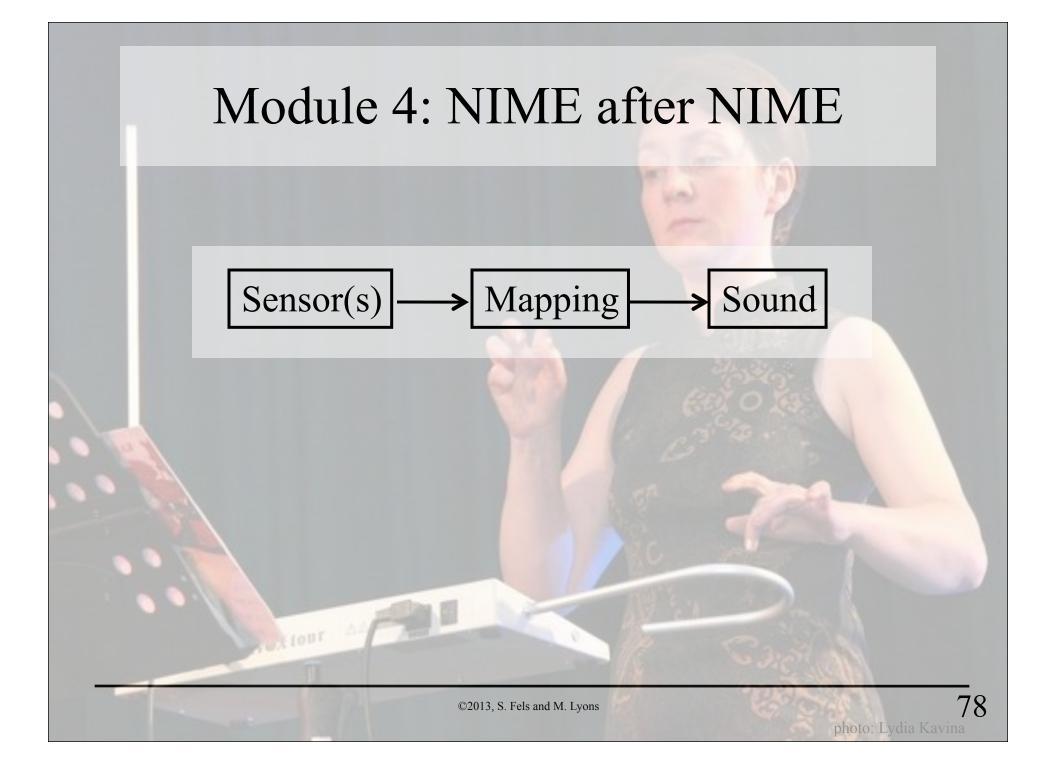
Joe Paradiso & student (NIME-02)


Where to study this field?

- IRCAM, Paris
- CCRMA, Stanford
- CIRMMT, McGill
- Princeton, CS & Music
- NYU Interactive Telecommunications Program
- SARC, Queen's, Belfast
- Growing field ...
- URLs listed in the References

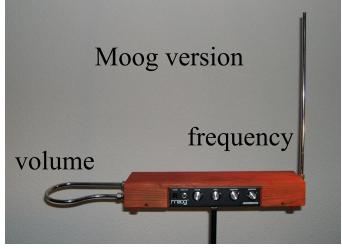

Specific Learning Resources

- Miranda & Wanderley (2006)
- Igoe (2007)
- Roads (1996)
- NIME Proceedings
- ICMC Proceedings
- Computer Music Journal
- Organized Sound
- J. New Music Research


Summary

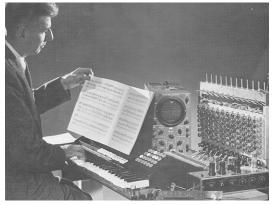
- Technology is increasing the fluidity of musical culture
- NIME presents special challenges for performers
- Well-designed visual feedback can greatly improve mapping transparency for audience and player
- Interaction metaphors another strategy
- Initial failure can enhance eventual success
- Perry's principles provide practical policies

Questions/Discussion


Break

Start again at 3:30!

Original NIMEs


- Leon Theremin, 1928
 - senses hand position relative to antennae
 - controls frequency and amplitude
 - Clara Rockmore playing

More original NIMEs

- Hugh Le Caine (1940s)
 - electronic sackbut
 - sensor keyboard
 - downward and side-to-side
 - potentiometers
 - right hand can modulate loudness and pitch
 - left hand modulates waveform
 - precursor to the mod-wheel

Science Dimension volume 9 issue 6 1977

Canada Science and Technology Museum

80

Electronic Sackbut

1971 commercial version

Buchla's Midi Controllers

- Thunder (1990)
 - 36 touch sensors
- Lightning 2 (1996)
 LED based position sensing
- Marimba Lumina (1999)
 - pads and ribbon controllers (strips)
 - bars are sensitive to proximity, hit location and movement
 - 4 different mallets for different effects

83

Buchla 200e Series music controllers

- Modules can be combined:
 - Control and Signal Router
 - Multi Dimensional Kinesthetic Input Port
 - Midi Decoder/Preset Manager
 - System Interface Arbitrary Function Generator (2 panel units)
 - Complex Waveform Generator
 - Source of Uncertainty
 - Quad Function Generator
 - Frequency Shifter / Balanced Modulator
 - Triple Morphing Filter
 - Quad Dynamics Manager

There's a lot of NIMEs out there

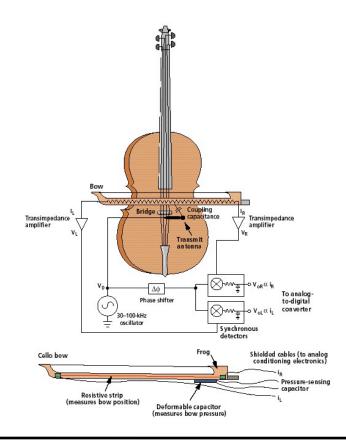

	2001	2002	2003	2004	2005	2006	2007	2008	Total
Instrument-like	1	2	2	2	2	4	4	1	18
Instrument-inspired	2	4	1	1	-	3	2	1	14
Extended instrument	2	4	5	3	5	7	6	5	37
Alternate controllers	21	31	24	23	35	22	19	22	197
Total	26	41	32	29	42	36	31	29	266

Table 3.2: Classes of instruments presented at the NIME conferences, by year (Marshall, 2009)

• Most are classed in the "Alternate" category

Augmented Instruments

- Hypercello (Gershenfeld & Chung, 1991)
 - related Hyperbow (Young, 2001)

Yo-Yo Ma, Tanglewood on August 14, 1991

Augmented Instuments

- Yamaha Disklavier
 - MIDI controlled acoustic piano
 - solenoid actuators to play keys
 - records key press
- Radio Baton + Disklavier performance
 - Jaffe & Schloss, The Seven Wonders of the Ancient World, 1991

Augmented Instruments

- Hyper-Flute (Palacio-Quintin, 2003)
 - standard Boehm flute
 - sensors:
 - magnetic field, G# and C# keys
 - ultrasound tracking
 - mercury tilt switch
 - pressure sensors (left hand and thumbs)
 - light sensor
 - buttons

Alternative Instruments: Using different sensors

Sensor	Occurences	Property Sensed
FSR	68	Force
Accelerometer	56	Acceleration
Video Camera	54	
$\operatorname{Button}/\operatorname{Switch}$	51	$\operatorname{Position}\ (\operatorname{On}/\operatorname{Off})$
Rotary Potentiometer	31	Rotary Position
Microphone	29	Sound Pressure
Linear Potentiometer	28	Linear Position
Infrared Distance Sensor	27	Linear Position
Linear Position Sensor	23	Linear Position
Bend Sensor	21	Rotary Position (Bending)

Table 3.3: Most popular sensors from NIME instruments

(Marshall, 2009)

Alternative Instruments

- approaches to taxonomy:
 - sensed property (i.e. wind)
 - player action (i.e. percussion)
 - instrument shape
 - relationship to body

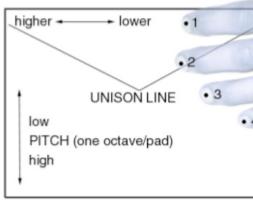
Hands Only - free gesture + physical

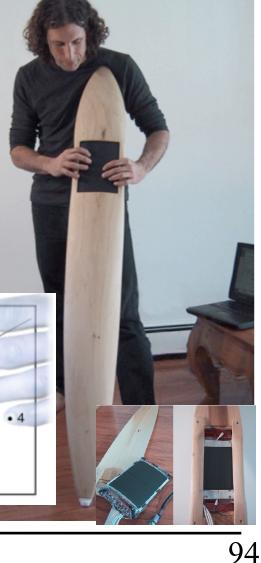
- Lady's Glove (Sonami, 1991+)
 - hall effect sensors, microswitches, resistive strips, pressure pad, accelerometer
 - controlled musical effects

free gesture + contact gesture + voice

• The Hands (Waisvisz, 1984)

Hands Only - free gesture


- Manual Input Sessions (Levin and Leibermann, 2004)
 - camera and OHP


THE MANUAL INPUT SESSIONS: "NEGOROP" golan levin / zach lieberman . 2004

- SoundSculpting (Mulder and Fels, 1998)
- GloveTalkII/GRASSP/DIVA, (Fels et al., 1994+)
- cybergloves, tracker, switches
- controlled formant synthesizer
- and more...

Hands - Contact gesture

- Most typical type of NIME
- Ski (Huott, 2002)
 - fibre optic multitouch pad
 - Tactex Inc.
 - mappings:
 - playback: linear, polar and angular control modes
 - percussive
 - pitch tuning:
 - MIDI controller
 - upright form factor

Hand - Contact gesture

- Pebblebox (O'Modhrain & Essl, 2004)
 - microphone + stones
 - granular synthesis
- play with stones
 - mixes granules

Hand - Contact gesture

- Crackle box (Waisvisz, 1975)
 - analog circuit
 - op-amp with body resistance connected to pins
 - in the tradition of circuit bending

©2013, S. Fels and M. Lyons

Hand - Contact gesture

- Lippold Haken's Continuum
 - touch sensitive neoprene covered
 - x, y along board
 - z pressure
 - MIDI controller
 - sound effects
 - continuous frequency
 - pitch bends

Jordan Rudess (Dream Theater), 2005

Breath and Hands

- iPhone Ocarina (Wang, 2009)
 - touch screen plus microphone
 - mapped to tones for ocarina sounds

Face/Head Control

- eSitar (Kapur et al, 2004)
 - accelerometer for head tilt
 - experimented with volume, duration, and more
- Mouthesizer (Lyons et al., 2003)
- SoFA, (Funk et al., 2005)
- Tongue'n Groove (Vogt et al., 2002)
 - ultrasound probe to measure tongue movement

Body

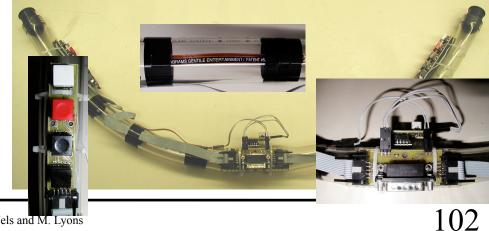
- Miburi from Yamaha, 1994
 - bend sensors at arm joints
 - two buttons/finger and thumb
 - two pressure sensors/foot
 - MIDI controller

Inside Body

- Biomuse (Knapp and Lusted, 1990)
 - 8 channel signal amp
 - EMG, EKG, EOG, EEG
- Tibeten singing bowls (Tanaka and *Knapp, 2002*)
 - EMG and position sensing
- miniBioMuseIII (Nagashima, 2003)
 - 8 EMG channels
 - mapped to bandpass filters, sinewave generators and FM synthesizers
 - used in BioCosmicStorm-II

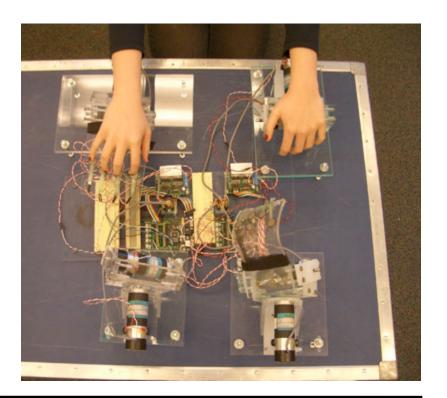
Collaborative Instruments

- Tooka (Fels and Vogt, 2002)
 - pressure for breath
 - buttons for fingers
 - bend sensor
 - touch sensor
- two players share breath
- coordinate movements
- MIDI mapping


Tooka: a Two Person Flute

An Experimental Two-person Breath Controller

created by : Sidney Fels, Graeme McCaig, Florian Vogt Linda Kaastra, Sachiyo Takahashi


Human Communication Technologies Laboratory (HCT Lab) University of British Columbia, Canada

© 2004 HCT

Collaborative Instruments

- OROBORO (Carlile & Hartmann, 2005)
 - haptic mirror between hand paddles
 - 4 FSRs/hand
 - mapped using Pd to:
 - violins sounds
 - sampled sounds

103

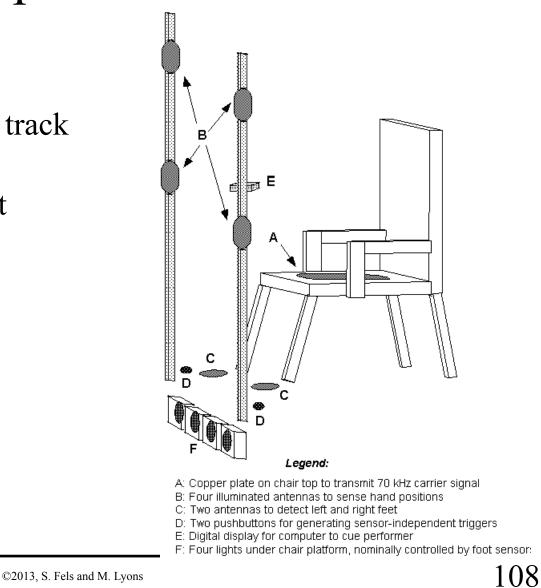
NIMEs for Novices: Jam-o-drum (Blaine and Perkis, 2000)

- 4 player audio/visual interface
 - drum pads sensors with rotation sensor around rim
- Drum circle concept
- Various musical games
 - turn taking
 - collaboration

NIMEs for Novices

- Interactive instruments embody all of the nuance, power, and potential of deterministic instruments, but the way they function allows for anyone, from the most skilled and musically talented performers to the most unskilled members of the large public, to participate in a musical process (Chadabe, 2002)
- Walk up and play

NIMEs for Novices


(Blaine & Fels, 2003)				Aptitude			
				Novice	Virtuoso		
		Single player	Single interface	Electronic Bullroarer Iamascope	Duet on piano		
Capacity			Multiple interfaces	Musical Trinkets	Jazz Ensembles		
	Capacity	Multiple players	Single interface	Beatbugs Squeezables Audio Grove Sound Mapping Speaking Orbs Jamodrum	Mikrophonie I, Tooka		
			Multiple interfaces	Augmented Groove Brain Opera Drum Circle	Mikrophonie II		

Brain Opera (Machover et al, 1996)

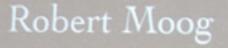
- Multiple NIMEs as part of a larger connected set of interaction
 - Forest station
 - Harmonic driving
 - Melody easel
 - Rhythm tree
 - Gesture wall
 - Digital baton
 - Audience sensing in performance space
 - Sensor chair

Brain Opera (Paradiso, 1999)

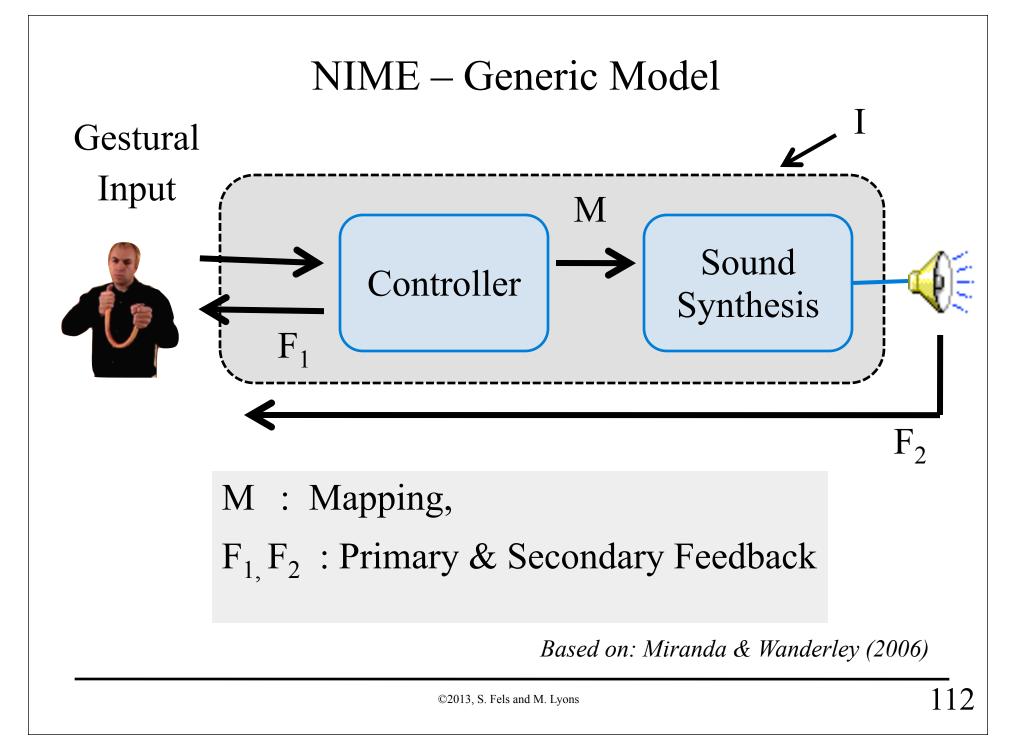
- Sensor chair
 - multiple antenae to track hand positions
 - two antenae for feet
 - buttons
 - lights
- MIDI mapping

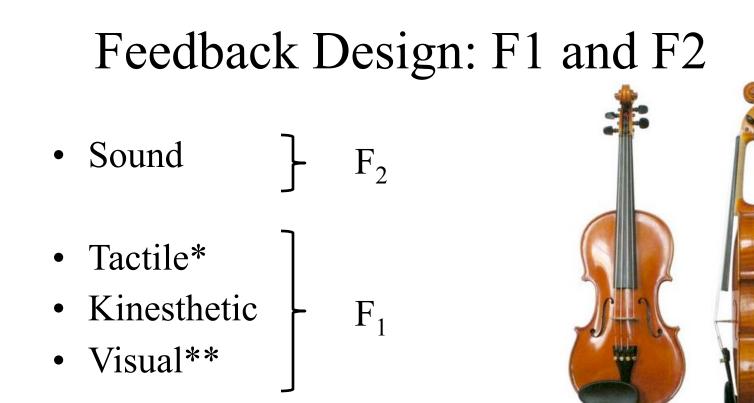
Brain Opera NIME

Summary

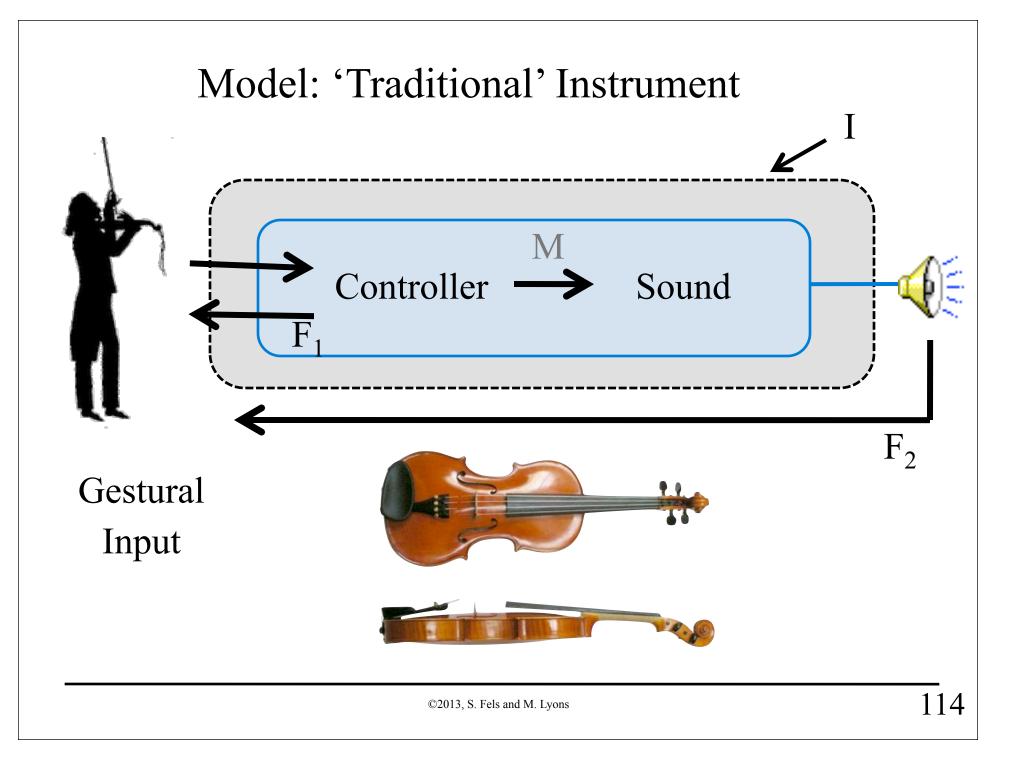

- Creating a NIME is easy to do
- Creating a good mapping is hard
- Playing it well takes practice to be a virtuoso
 - some NIMEs created to be easy to play but not so expressive
- Without a piece, difficult to gain acceptance
- Often audience doesn't know what is going on
- Many explorations trying different ways to make music

Module 5: NIME Theory


NIMEO4 KEYNOTE ADDRESS

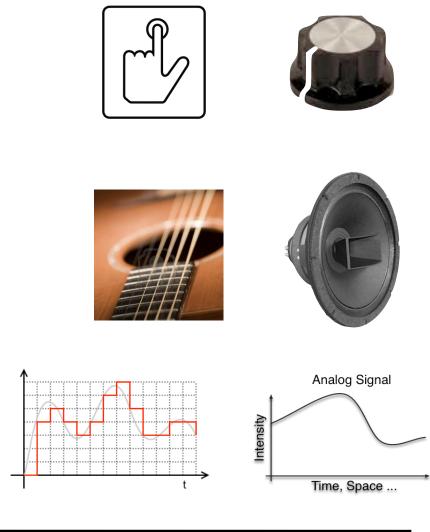

June 3, 2004

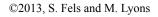
HOW DO PERFORMERS INTERACT WITH THEIR INSTRUMENTS?



- Generic model of a musical interface
- Role of feedback from the interface
- Mapping problem

- *Includes vibro-tactile feedback due to sound waves on the instrument
- ** Re: Module 2 on Visual Interfaces




NIMEs decouple

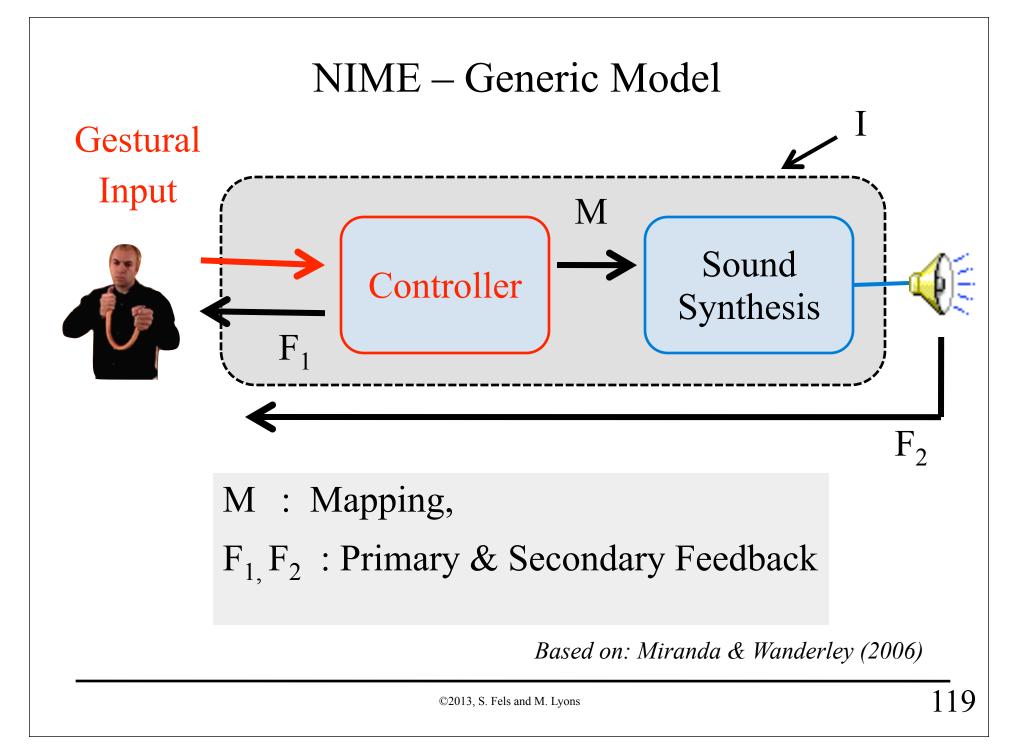
- Control separate from Synthesis
- Mapping (M) is designed
- Feedback (F1 and F2) is designed
- Controller/Interface is designed

NIME representations

- discrete vs. continuous controllers
 - keys vs knobs
- acoustic vs electronic sound output
 - vibrating string vs.
 speaker
- digital vs analog representations
 - bits vs. voltage

NIME, DMI, Instrument

- musical interface and nime used interchangeably
- DMI 'Digital Musical Instrument'
- DMI & MI may be preferable because a NIME will not be new forever



©2013, S. Fels and M. Lyons

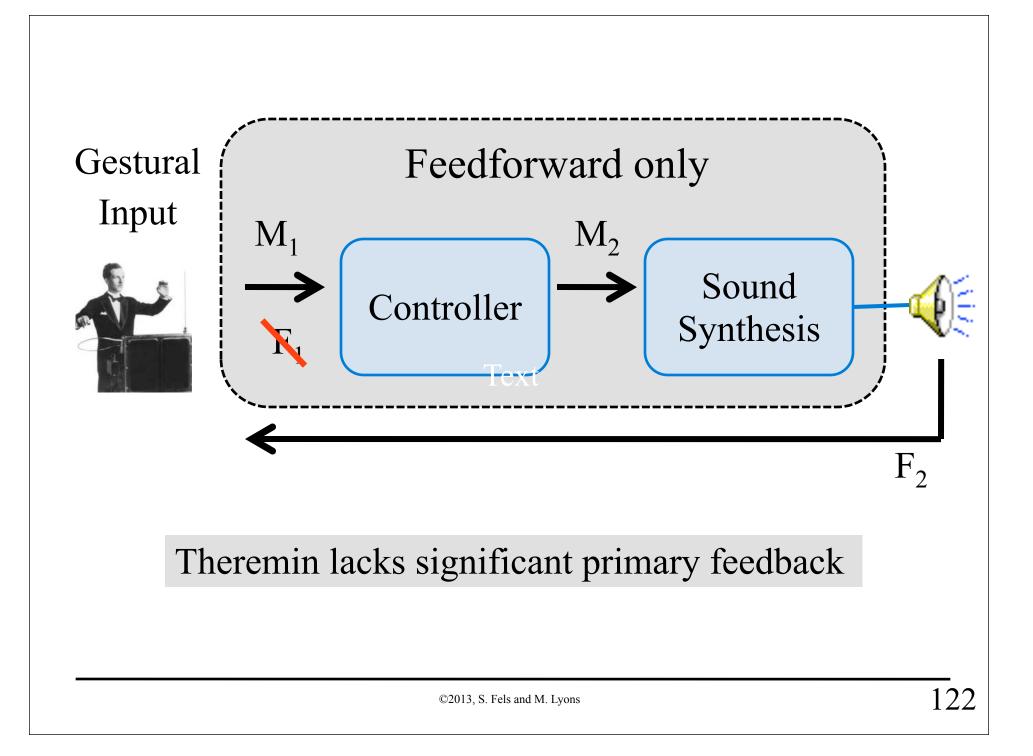
Digital NIME

- Computer enables arbitrary design of interface behaviour:
 - controller
 - feedback (F1 & F2)
 - mapping (M)
 - synthesizer

Designing Controllers: Gestural Input

- Free gesture interfaces - no physical contact
- Physical contact interfaces

 all acoustic instruments
- NIMEs can be in either

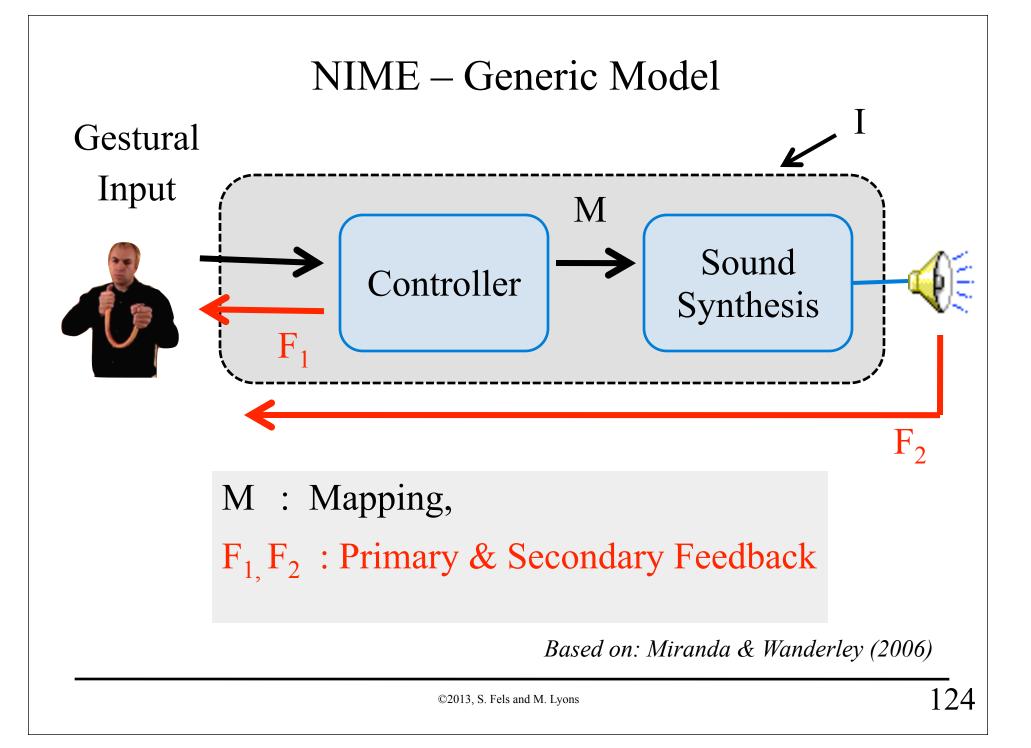


Free Gesture Interface

- Theremin (1919)
- Sound feedback (F₂) only
- No primary tactile or visual feedback (F₁)
- Have been few virtuosos
- Considered difficult to master

Léon Theremin

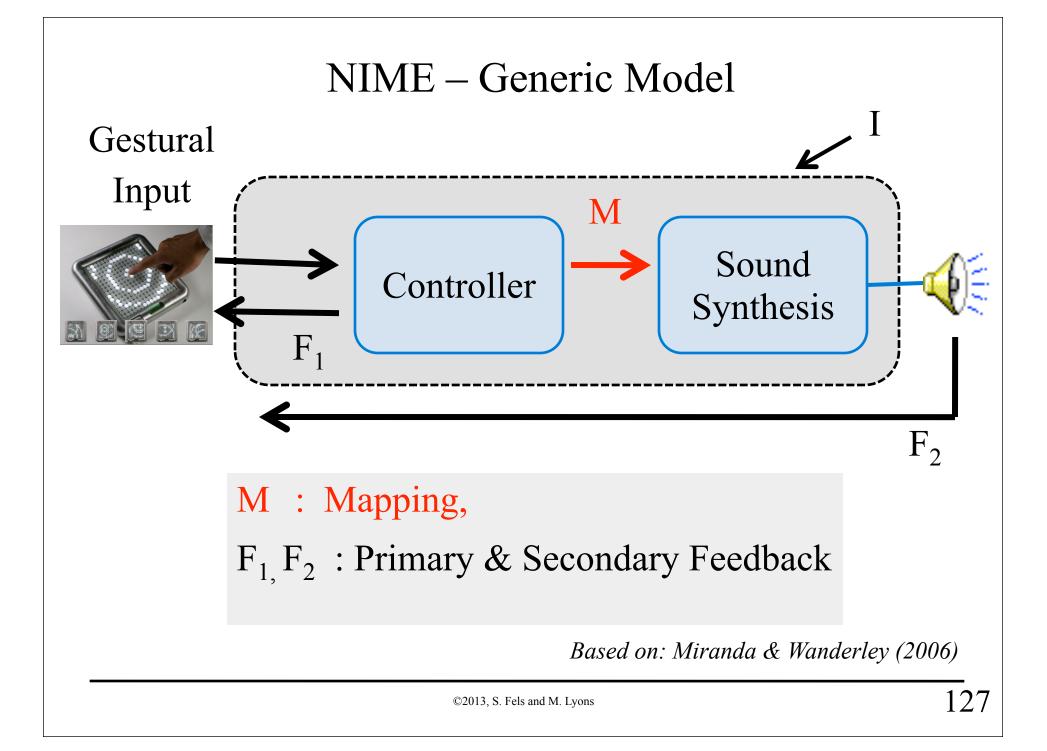
The Hands



• Passive F₁

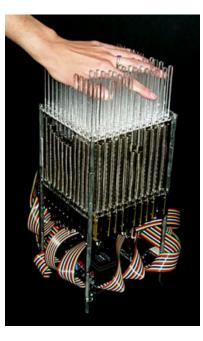
Michel Waisvisz *et al*. STEIM, Amsterdam (Studio for Electro-instrumental Music)

 $\mathbb{C}2013,\,S.$ Fels and M. Lyons

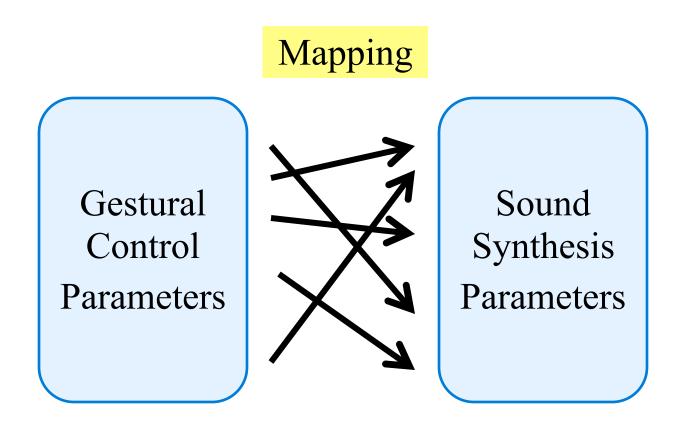

F₁: Visual & Tactile Feedback

Nishiburi & Iwai NIME-06

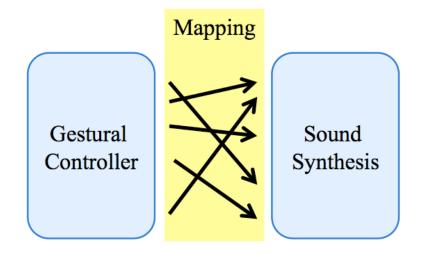
Tenori-on



Instrument Mapping

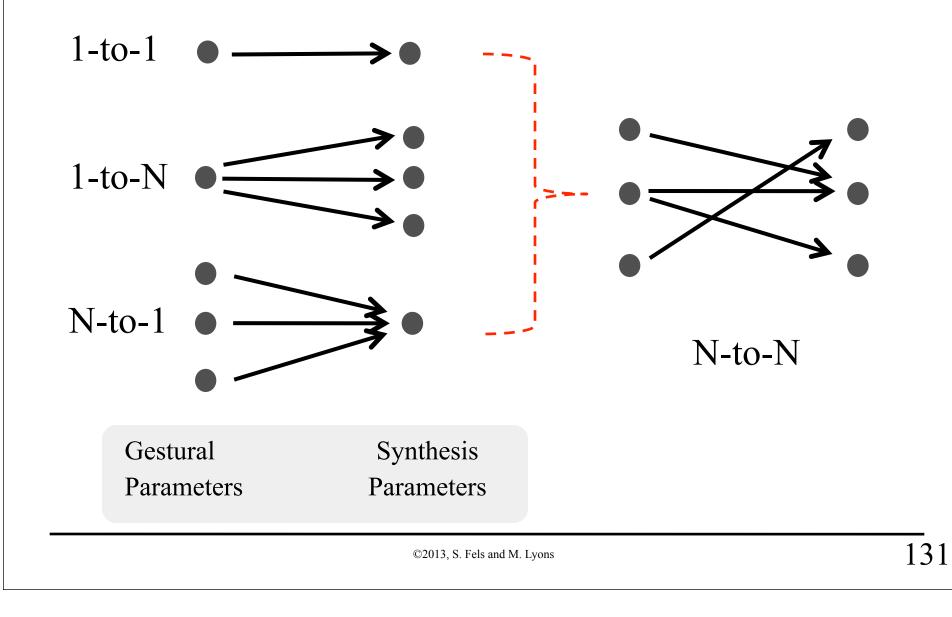

Fairlight CMI, 1980s T. Kriese Polyphonic Digital Sampling Synth

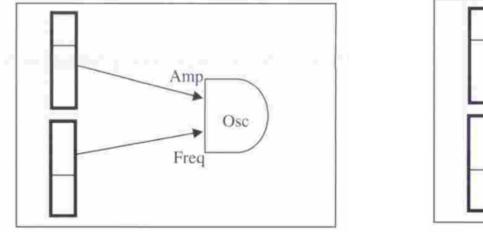
Matrix (Overholt, 2001)


Shakuhachi

'Mapping Problem':
How to design the gesture to sound mapping?

Aspects of the Mapping Problem


- Dimensionality
- Complexity
- Mapping Strategy
- Other aspects ...


The mapping layer can be considered as the essence of a musical interface

Hunt, Wanderley, and Paradis (2003)

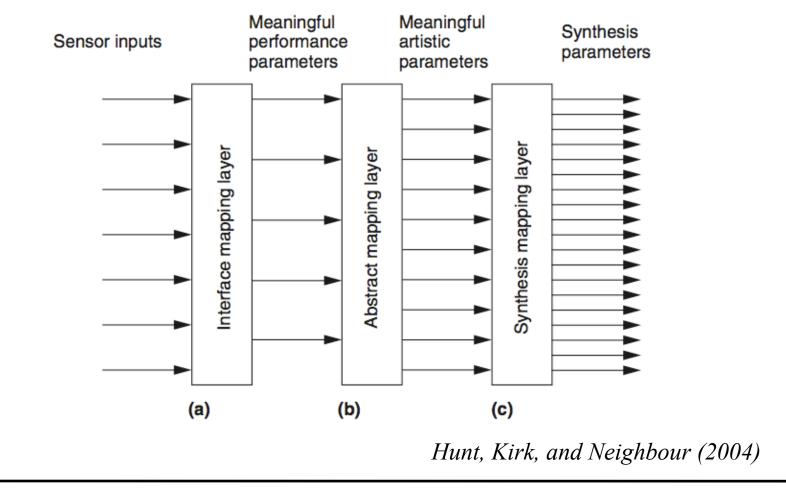
Dimensionality: Types of Mapping

Complexity: Simple & Complex Mappings

Simple

Complex

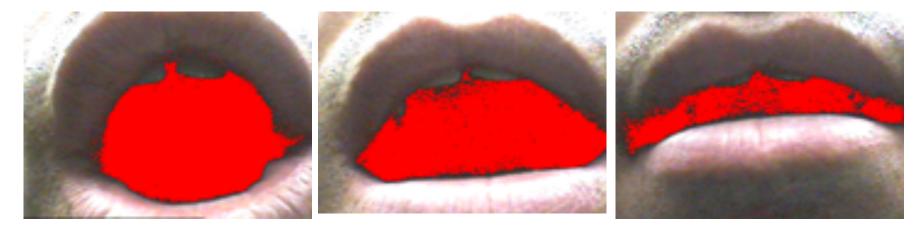
Hunt, Wanderley, and Paradis (2003)


Mapping Complexity

complexity can lead to better expression

- 1 to 1 usually doesn't do the trick
 - * not interesting
 - * not enjoyable
 - * not satisfying

Hunt, Wanderley, & Paradis, NIME-02


Understanding Complexity: Three Layer Mapping Strategy

Abstract Mapping Layer example

Mouthesizer interface (Module 2: Camera-based Interfaces)

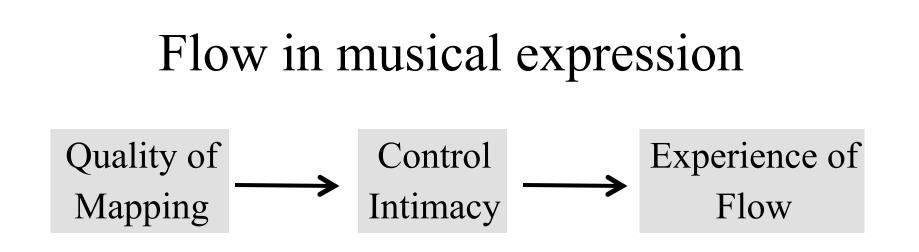
Controlling a Formant Filter using Mouth Shape

[o] [a] [i]

Lyons et al., NIME-03

Mouthesizer Vowel Mapping

Mapping Design Strategy


- Advantage to have a control interface which is based on the **perceptual qualities** of timbre spaces
- Better mapping leads to more playable interface
- How do we characterize playability?

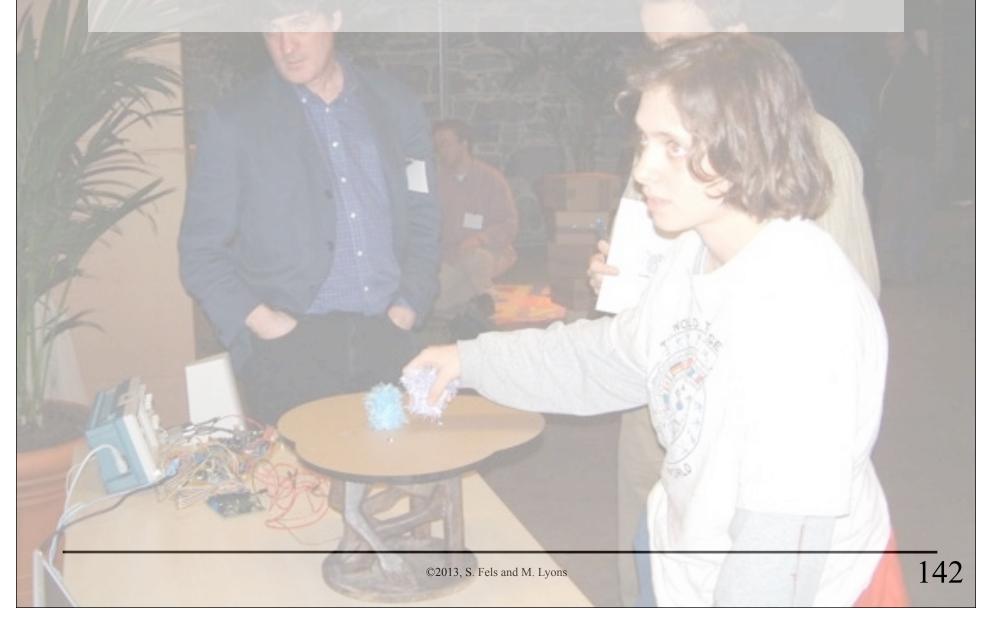
Musical Control Intimacy

"... the match between the variety of musically desirable sounds produced and the psychophysiological capabilities of a practiced performer."

Moore (1988)

Control Intimacy depends (somehow) upon gesture to sound mapping

- Special contact with the instrument
- Development of a subtle feeling for sound
- Feeling of effortlessness
- Playful & Free-spirited feeling handling of the material
- A. Burzick (2002)


Threats to Intimacy

- Latency between gesture and sound
- Lack of primary feedback
- Poor mapping

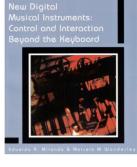
Summary

- Generic musical interface model is helpful in understanding what makes & breaks a NIME
- Mapping constitutes the essence of a digital NIME
- Mapping is not straightforward and many design 'strategies' have been tried
- Multiplayer mappings can be better than simple one-to-one mappings
- Studies of mapping and feedback are core research topics of NIME

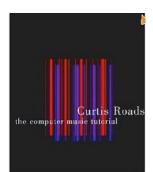
Module 6: NIME Education

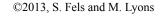
Education and NIME

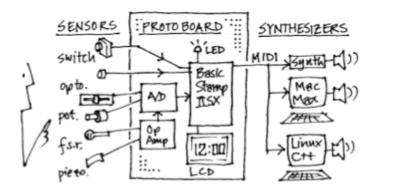
- Sound Synthesis
- Sensors, Effectors, Microcontrollers
- Basic Electronics
- Communication Protocols (MIDI, OSC, TCP etc.)
- Sound Synthesis and Processing
- Acoustics
- Human-Computer Interaction
- Music

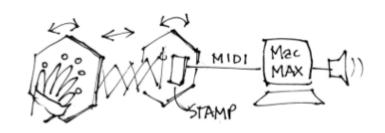

Where to study this field?

- IRCAM, Paris
- CCRMA, Stanford
- CIRMMT, McGill
- Princeton, CS & Music
- NYU Interactive Telecommunications Program
- SARC, Queen's, Belfast
- Growing field ...
- URLs listed in the References


Specific Learning Resources


- Miranda & Wanderley (2006)
- Igoe (2007)
- Roads (1996)
- NIME Proceedings
- ICMC Proceedings
- Computer Music Journal
- Organized Sound
- J. New Music Research





Curricula

- beginning graduate or senior undergraduate level
- Courses tend to be project oriented
- Students learn what they need
- Live performance or Demo is necessary for completion of the course (ITP, CCRMA)

Verplank, Sapp, Matthews (NIME-01)

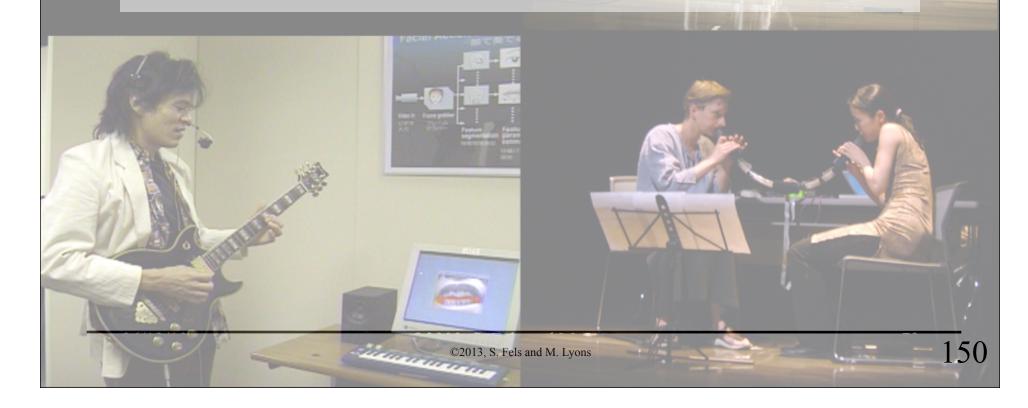
New Interfaces for Musical Expression

interactive telecommunications program

- NYU ITP NIME Course
- Master's program in design & technology attracting students from a wide range of backgrounds

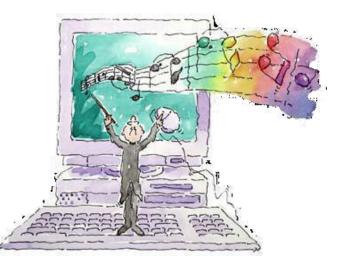
Gideon D'Arcangelo Hans C. Steiner Jamie Allen

Taku Lippit (NIME-04)


NIME Curriculum - Topics

- Historical Survey of Musical Instrument Types
- Attributes of Musical Expression
- Music Theory and Composition
- Musical Interface Responsiveness
- Discrete vs. Continuous Controllers
- Gestures and Mapping
- Novice and Expert Interfaces
- Spectacle and Visual Feedback in Performance
- Collaborative Interfaces

Summary


- Substantial resources for learning about NIME
- NIME courses are usually project based
- Number of universities offering programs of study is expanding
- Next frontier: high schools, science fairs

Concluding Remarks

How to Play the Computer?

- Computers offer a wide range of sound and music creation opportunities
- How can we create new interfaces to play computers in a way that is appropriate to human brains & bodies?

Here's how...

- NIME tools
- NIME principles
- NIME examples
- NIME theory
- NIME education

How to get involved

- NIME community
 - community@nime.org
 - subscribe with community-request@nime.org
- NIME website
 - www.nime.org
- ICMC website
 - www.computermusic.org/
- Related conferences
- INTERACT 2011 (NIME Session)
- ICEC 2011 (<u>www.icec2011.org</u>)

Bigger picture

- 1. introduced the theory and practice of NIME
- 2. NIME community is very accessible and growing
- 3. get to know some of the people of NIME
- 4. easy to start creating NIMEs and a lifetime of enjoyment to master
- 5. musical expression transcends gender and culture
- 6. if you are not having fun, it's probably not for you

Questions & Discussions

- Contact us:
 - Sidney Fels, ssfels@ece.ubc.ca
 - Michael Lyons, lyons@im.ritsumei.ac.jp

www.nime.org

www.ece.ubc.ca/~ssfels/ SIGGRAPH2011/NIME-course-Fels-Lyons.pdf